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An algorithm to compute the tansient scattering of sound by elastic spheres and

shells has been developed and tested. Short tone bursts incident on elastic spherical shells

under various conditions have been investigated. Previous experiment results for elastic

spheres and shells have been confirmed. Some interesting physical aspects concerning the

basics of the scattering mechanism have been detected. A mid-frequency enhancement has

been examined for thin shells and compared with the ray model results. The ray model is

found to closely approximate the enhanced backscattering for tone bursts associated with a

subsonic wave on thin shells. A related filter-like effect of thin shells for the selected

frequencies has been detected and quantitatively described and the impulse response has

been computed. The present computations can be of practical use and can be compared

with observations or ray models of the scattering from shells under the same conditions if

such observations or models become available later on. The scattering of tone bursts from

shells was calculated when the carrier frequency is at or close to the frequency of resonance

associated with a reverberation of longitudinal waves across the thickness of the shell.
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When the shell is a fluid, the results ame easily int'preted in terms of an existing ray model.

When the shell is elastic, they suggest the presence of a mechanism for prompt radiation

noninvolving complete circumnavigation of the sphere by guided elastic waves.
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CHAPTER 1

Introduction

Scattering from well-shaped smooth objects such as solid spheres and spherical

shells has been of interest and investigated for a long time, yet some basic physical aspects

still remain not well understood or even unknown. Recent attention has been focused on

the geometrical representation of scattering and its extension to arbitrary objects. For the

last a couple of years, Dr. Marston and his research group have done marvelous jobs on the

modeling of the scattering problem by ray synthesis method which has turned out to work

excitingly well. The modeling is, however, not perfect. There are still some unclear physics

which presumably can be seen by investigating scattering of various transient waves.

There have been numerous papers and researches on the scattering from solid

spheres and hollow spheres, nevertheless, relatively few transient experiments or

calculations can be found 146. One of the difficulties in applying the geometrical theory of

diffraction (GTD) to elastic objects is that the contributions due to surface guided elastic

waves (SEW), such as Rayleigh and Lamb waves7 ,8, can be important. Present work is to

compute the transient backscattering from elastic spheres and spherical shells by using the

Fourier Transform Method. This report is written in a consistent e-iWt time convention

where i = f-T. Results verified the previous experiments, and most importantly, have

revealed some exciting physics concerning the backscattering mechanism, hence helped

better understand the scattering process and can be helpful in further modeling of ray

method.
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The arrangement of the report is as follows. First, the steady state scattering will be
briefly discussed in Chapter 2 following the introduction. Chapter 3 presents the transient
scattering formulation and the method used in the calculations. In Chapter 4, some more

detailed computational considerations can be found and tests against previous
experimental work for elastic sphere will be conducted. Chapter 5 deals with the main part

of the report --- backscattering from elastic shells. Quite a few interesting results are
presented in this chapter. A short conclusion and discussion can be found in Chapter 6.

Appendices will present the programs used to finish the job and some illustr.tions about the
writing of the programs which can be regarded as a "user's guide". Also presented in the

appendices are some additional data and graphs for reference purpose.
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CHAPTER 2

Steady-State Scattering

2.1 Far field scattering

Figure I illustrates a generic problem of interest. The center of an elastic Tphere or a

smooth empty shell having a circular profile is fixed at the origin of a spherical coordinate

system.

Considering an infinitely extended incident plane pressure wave of a single

frequency travelling in the +z direction

Pi (t) = Po eikz-iOt = Po e ik(z-ct) , (2.1)

where Po is the pressure amplitude , k=2rVX is the wavenumber, X is the wavelength and c

is the sound speed in the fluid. The exact PWS (Partial Wave Series) solution can be

obtained by solving the differential equations subject to proper boundary conditions. The

solution is based on the summation of infinite terms of spherical Bessel and Hankel

functions of the first kind. This response to a single frequency incident wave has been

given a widely accepted name as the reflection form function denoted here by F(ka), where

ka is the dimensionless wavenumber. Let F(ka)e-ic~t be the solution for constant

frequency, then at point P, which is at a distance r>>ka2 from the center, harmonic

scattered wave is produced 3

PN(t) =() Po eik(r-ct)ka) (2.2)
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P

Fig. 1 Geometrical illustration of problem . The incident pressure wave
is an infinitely extended plane wave for the steady state scattering and a
few cycles sine burst for the transient scattering. The scatterer can be
an elastic sphere or a spherical shell. The thickness of shell is h - a - b.
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Eq.(2.2) has the form of an outgoing spherical wave modified by the form function. For

convenience, we define two dimensionless variables as following:

x = ka = (0c) a

",=(ct-r)/a ,or xr=k(ct-r). (2.3)

For the incident wave, r in above expression should be replaced by z. Obviously, T is a

dimensionless time interval, which is analogous to retarded time, with a unit

corresponding to the time period necessary for the wave to travel a distance equal to the

radius of the sphere or the out radius of the shell in the speed of sound in water.

Equation(2.2) can then be rewritten as

P4r) = (Irr)Po ePix0 F(x) (2.4)

2.2 Form Function

The complex scattering amplitude or form function in the backscattering direction

has the exact partial wave series representation

F(x) = , o(-l)"(2n + 1)-Bx)

ix •Dnx) (2.5)

where the functions Bn(x) and Dn(x) are 3x3 or 5x5 determinants obtained by satisfying the

appropriate boundary conditions for elastic sphere9,10,fluid shell11 or elastic shell 12.

The computation of the form function requires the truncation of the infinite

summation in Eq. (2.4). The minimum number of terms (or the maximum number of terms

used in the calculation) nmax retained for sufficient convergence of F(x) exceeds x. The
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following criterion discussed by S. IargI and P.L.Marston will be used throughout this

work13,

nmx = 2 + [ x + 4.Ox 1 3 ], x< 8

nmax = 3 + [x + 4.05x0/ 3], x28 (2.6)

where the square brackets imply truncation to the nearest integer.
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Chapter 3

Transient Analysis

3.1 Signal in Time and Frequencv domain

For any incident time signal g(t), we can write down its frequency spectrum as

Fourier integral

G(wo) = if• g~t) e+i(Ot dt (3.1)

and

(00

g(t) = -L G(co) e'i(t do274fo (3.2)

We can also rewrite these expressions in terms of our dimensiondess variables x and T as

G(x) = fe g(T) eix? dr (33)

and

g(T) = 2..L.f G(x) e(i4 dx

"2if(34
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For each single frequency component G(x), we have for its scattering response in

frequency domain

P(x) = G(x) F(x). (3.5)

The total far-field scattering wave in the time domain is hence given by

P(,t) = • 2 ). G(x) ljx~eix dx
2r 27c (3.6)

Since only the backscattering is of interest in this report, F(x) in above equation is the form

function at specific angle 0 = 7.

3.2 Transient Formulation

If, in Eq. (3.6), one writes

ptc)~ I (x) F(4xteix dx
2x , (3.7)

then by computing p'(T) as a function of T, the scattered wave as a function of time

observed at point P will be obtained. In other word, a pulseform will be seen at the point P

developing like that computed according to Eq. 3.7 as value of r increases.

For a real incident wave we have g*(c) = g(T), therefore

G(-x) = f g(t) e"1 dr
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=G'(x).

So we obtain

G(-x) = G*(x) (3.8)

Let the incident wave be a Dirac delta function 8(T), then G(x) a 1 and

p I)= f F(x)e""'dx

We see that p'(T) and F(x) are the impulse response and the transfer function of the

system (scatterer) respectively. They are a Fourier Transform pair. Since p'(T) is a real

function, following the above derivation, we immediately write down

F(-x) = F*(x) (3.9)

Now, we are ready to simplify our Eq.(3.7) as

Or) G(x) F~x)e-ixl dx

-±j G(x) F(x~e-ix't dx+ -UJ G(x) Fjx~e-ixT dx
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- rj C(-x) 1(-xOTX dx+ G (x) F(x~e-iXI dx

I ( f- 0(x) Fjx~e1xT dx)+ -L f (x) ljxý-ixl dx

" 2 Refo 0(x) F(xe-ixr dx (3.10)

Eq. (3.10) is the basic formula we will use throughout the work. By using Eq.(3.10), we

don't need to worry about the physical meaning of negative frequency. This equation has

turned out to be important in understanding the algorithm developed later by using Digital

Fourier Transform method.
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Chapter 4

Computational Consideration and tests

4.1 Upper limit of the integration

First, a Fortran program computing the frequency spectrum of an incident several

cycles sine burst was developed. It was checked by determining the backscattering from a

hypothetical body for which the form function F(x) s 1. Eq.(3.7) immediately leads that

p 1') is the inverse transform of the incident wave, therefore an exactly the same signal is

expected. However, since it is impractical to do the integration in Eq.(3.10) over the x

range of (0, +oo), we truncated the upper limit of the integration at xmax. For a b-cycle

sine tone burst

2xbsin (not 0:5LxW
gjt)= f O0o (4.1)

otherwise

or, in terms of x and r

2,rb
sinx I'T 0:5.s B0 (4.2)

otherwise

where wo is the carrying frequency of the burst and xo - koa = ooa/c is its dimensionless

counterpart. Its spectrum can be calculated as follows,
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0(x m f r) e'T ft

sin x. eix fd'

=1 [Il-eift)-l(1 - iEP] 43

where a = x+xo, = - x-x•. The integration in Eq.(3.10) was accomplished by utilizing

the simple trapezoidal method. To assure the detail of the scattered wave be properly

displayed, the interval between successive T values has to be chosen small enough. This

value has been set to AT= B so that there are 25 points over one cycle of sine burst (see
25 b

more detail in Appendix A6). For the case of a 4-cycle burst with xo = 49. 1, M - 0.02

and xmax was chosen to be 400. This value of xmax is determined by the fact that the

inverse transformed version has been good enough for a cut-off frequency of 400 and the

convergence beyond 400 is so slow that in order to get significant improvement over the

case of xmax = 400, xmax has to be greater than 1000, which implies whole lot a more

computational work. The ideal incident tone burst and computed backscattering from an

object with F(x) w 1, or the real incident burst are both shown in Fig. 2.

Replacing the integral's upper limit with a finite value is the same as letting the

signal pass through an ideal low-pass filter. Therefore a filtered replica of the ideal incident

burst is expected. This effect is clearly shown by the actual incident burst depicted in Fig. 2

where the sharp part of the ideal burst has been rounded off since the high frequency

information above the xmax have been lost. But the amplitude of those high frequency

components are small enough that the difference is not significant as far as the transient

scattering is concerned. Physical aspects are still there and almost unaffected.

Illi IIMlIII III
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P

1.0'

0.3.

0.0.

-0.5

-1.0

-0.5 0.0 0.3 1.0

T

1.0

0.5

0.0'

-0.5,

-1.0'

-0.5 0.0 051.0

Fig2a. Ideal incident burst and its practical version. The 4-cycle sine burst has a
carrier frequency xo = 49.1. The cut-off frequency is xmax = 400. The real burst is
good enough, which shows that the xmax = 400 is sufficient.
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4.2 Test against experiment

The test against the experiment result obtained by William and Marston9 for a

tungsten carbide sphere.in water was then carried out. The material parameters used for

tungsten carbide were: density p- 13.80 g/cm3 , longitudinal wave speed cl= 6.860 xl0 5

cm/s, shear wave speed = 4.185 x 10 5 cm/s. Those for water were: density pw= lg/Cm 3,

longitudinal wave speed = 1.4760 x 10 5 cm/s. The incident burst is again chosen as stated

in Eq. 4.2 with b=4. The form function F(x), calculated on the Dec station in the range of

0<x<400 with an interval Ax = 0.05 and plotted on HP-7475A plotter, is shown as Fig.3b

for completeness. Both the experiment and calculated results are also shown in Fig. 3

where we have seen that they match each other reasonably well. The form function is

referenced at the center of the sphere so that scattered wave leads the incident wave by 'c

=2. This test simply verified that the approach to the transient problem is successful.

4.3 DFTI.Aguoac.h

To do the computation more effectively we utilize the FFT programs provided by

the CMS main frame. To better understand the algorithm we are using we have to talk

about the DFT (abbreviation for Digital Fourier Transform) first.

DFT 14 of a sequence of N samples, f(nT), 0<n<N-1, is defined as another

sequence

(JO)- q f~nTeiTfj
n --o (4.4)

1 *1
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Ma=i p (g/cm 3) c, (kWn/s) CS (knis)

Tungsten carbide 13.80 6.860 4.185

Water 1.00 1.476

Table 1. Material parameters for tungsten carbide sphere and water.
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Th inverse DFr is given by

AnT) - I ij)e-f'i
N11 0  (4.5)

where 0: n5 •N-1, O<j5 N-1 and

NT• (4.6)

Clear enough, N has to be very large if we intent to have both frequency and time

intervals to be sufficiently small so that we don't lost any detailed information during the

computations.

4.4 amniin.

Now we consider an input sequence Yj obtained by sampling the incident sine burst

at an equal interval AM. Since DFT regards the input sequence as one period of a periodic

signal, we let Yj be described as

sin (xoBm/M) m=OI ......... M-1

yj= { (4.7)
0 m= M, M+I ..... N,

where M is the number of points over the duration of the burst while N is the length of the

input sequence. A look at the measurements of backscattering by elastic sphere and shells

tells us that the ratio of N/M must be greater than 16 if we want to distinguish at least the

first few scattered surface waves. By letting the ratio big enough, we can assure the period

of the input sequence to be long enough to cover the transient time interval we are interested

in. Otherwise, the second period of the specular reflection would get back to our
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measurement point P before the SEW due to the first burst. This is the intrinsic

disadvantage of the method over the previous one where we only have one period of burst.

This turns out not to be a problem because in order to satisfy other conditions to be

discussed below, N has to be very large compared with M, which ensures the above

condition in any case.

Sampling period At has to be chosen so that there are sufficient sampling points

over one cycle of the burst. And at the same time we need to be sure that the frequency

interval Ax is small enough. But calculating of the form function involves a lot of

computing time, Ax is therefore set to be 0.05 which has been proven sufficient by the

later computational results. Actually one can not ordinarily discern the results of Ax = 0.05

and Ax = 0.01 . Suppose we want L points per cycle, then,

M=Lx b (4.8)

M = 23L (4.9)

and

N 2z LXO
AT Ax Ax (4.10)

for L = 20 and xo=49.1, N=19,640. The maximum xo value involved in this work is

about 340 and resulting huge number of N can be a computing problem. To avoid this we

will have to decrease the value of L and increase the value of Ax sometimes ( see more

detail in the Appendix A6).
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4.5 FF Algorithm

FFT programs we used are FFTCF and FFTCB routines in the IMSL bankt S.
FFTCF routine computes the discrete complex Fourier Transform of a complex vector of
size N while FFTCB computes the inverse discrete transform of a complex vector of size
N. The method used is a variant of the Cooley- Tukey algorithm which is most effective
when N is a product of small prime factors. Specifically, given an N-vector Y, FFTCF

returns another N-vector Z

N-I
Zj= Y Yne2lxiJ/N, j=0,l1,... N-1 (4.11)

n=O

and given an N-vector Z, FFTCB returns another N-vector Y

N-I
Nj Ze"2.uiIN. n= 0,1,... N-i (4.12)

For a real sequence Yn* = Yn, we have

N-I
ZN.j= 1 Y, e2xir4N -jW

n-0

N-I
= 7 y, em e-2xi:W

n-O

N-I
-7, (Y, e2xiAi)

-zO

or,

//

/

/
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ZN.? .- (4.13)

Above equation is analogous to Eq.(3.8). Clearly, Zj (j>[N/2]) corresponds to the negative

frequency components and ZNII is the highest frequency component calculated by the FFT.

Therefore we can also write

Yn= 2 RN- ZI j e-2xni/N n= 0,1,...,N-1 (4.14)

Eq.(3.10) becomes

P'n 2R R " ZjFj e-CiN n-0,1,...,N- (4.15)

The problem of reference point can be serious for the FF1T calculation. If we still let

the incident burst be described by Eq.(4.7), we would expect the backscattering echoes

leading the incident burst by = 2. In other word, backscattering would start at r = -2. But

FFT routines do not provide any data in the negative time scale. In fact, since the incident

burst is regarded as one period of a periodic input sequence, the echo starting at r = -2

would appear at the end of the first period of computed backscattering. Basically, there are

two ways to solve the problem. One way is to multiply each frequency component of

incident burst by a phase shift factor exp(i2ka) before doing the integration or summation.

This is equivalent to taking the convolution of the incident burst with 8(?-2). But this 8

function could not be perfect due to the upper limit of integration or summation. This will

cause some distortion on the real incident burst. The other way is to directly shift the

incident burst over the time scale so that is starts at? = 2 instead of? = 0. This is in

I I I I
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principle the same as the first method but avoids the other unwanted effect. In order to see

the early stage of the backscattering clearly, we have actually shifted the incident burst so

that it starts at t = 3. The backscattering echoes therefore starts at r - 1 in any case. The

ideal and real (inverse transformed assuming a hypothetical body with F(x) z 1) incident

bursts for FFT routines are shown in Fig.4a. The spectum of the burst was computed by

FFTCF routine and the backscattered wave was computed by FFTCB routine according to

Eq.(4.15) where we have let Zj - 0 forj = [n/21+l, ... N-i. As we see from Fig.4b, The

backscattered wave calculated by using the OFT is exactly the same as our previous

computed result by doing the integration directly (Fig.3).
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Fig.4a. Ideal incident burst and its practical version for FFT algorithm. They start
at ' = 3 instead of 0. The xmax is again chosen to be 400.
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Chapter 5

Backscattering From Elastic Shells

5.1 Verification with Exneriments

The same FFT algorithm was applied to the case of a 16.2% - thick spherical shell.

The material constants are listed in Table 2. The results for ka = 68.8, 64.7, 36.4 are

presented in Fig. 5. Incident burst was again chosen to be four-cycle sine wave. These

results reasonably match the previous experiment result obtained by S. Kargl and P.L.

Marston 12 which is also shown in Fig.5 for comparison. Evidently, there are some

significant difference. In the computation case a slow varying wave packet shows up,

which was not expected and understood at the very beginning of the report at all. But we

can get some clue by looking at the form function of such a shell which is also given in

Fig.5. Clearly there is a big hump at the very low frequency. This phenomenon explains, at

least tentatively, why the low frequency components of the incident wave were sort of

amplified and the effect was so evident. The central dimensionless wavenumber of the

hump is around x = 5. For the a = 1.905cm shell, it corresponds a low frequency of fh =

62kHz which is much lower than the actual carrier frequency of the incident burst. This

enhancement of the low frequency response may have been suppressed during the

experiments since the combined transmitting and receiving apparatus would not have had

the broad bandwidth assumed in the calculation. It is especially plausible that the four-cycle

source burst used in the experiments did not have the low frequency spectral components

implicit in Eq.(4.3). For thinner shells, the enhancement is shifted to a higher frequency

and becomes what is known as the mid-frequency enhancement of the backscattering.
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Mateial p (g/cm 3) c, (km/s) cs (km/s)

440 C stainless stell 7.84 5.854 3.150

Water 1.00 1.479

T====== --------- - --- -------

Table 2. Material parameters for SS440C shell and water.
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FORM FUNCTION FOR SPHERICAL SHELL
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Fig.5b. The form function of a 16.2%-thick SS440C shell.
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FORM FUNCTION FOR SPHERICAL SHELL
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Fig.5b. The form function of a 16.2%-thick SS440C shell (continued).
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5.2 More on Mid-frequenen Enhancement

The unexpected phenomenon and the tentative yet reasonable explanation lead us to

the further examination of some other shell cases. Because the hump effect will most likely

happen for thin shells, the backscattering of a 4-cycle sine burst incident on a 5% - thick

spherical shell was computed. The carrier frequency xo = 66.3 was chosen, which happens

to be a form function minimum. Shown in Fig.6 are the form function, spectrum of the

incident burst and the transient backscattering. This time we see a huge hump or "hill" in

the range of ka values 18-24 in Fig.6a and a relatively large amplitude of components in

this range for the incident burst in Fig.6b. These combined factors clearly explain the low

frequency signal detected in Fig.6c. There is a relatively large response to the initial weak

low frequency component of the incident burst.

In the system point of view, the shell is acting like a filter with a big response for

ka = 18-24. Any significant frequency component in this range for any input signal will be

singled out. Then what about a burst with a carrier frequency in that range? The question

is well answered by the huge echo following the specular reflection as shown in Fig.6d for

a 4-cycle sine burst with xo = 22.1. This particular value of xo was picked up because in

Fig.6c we see the low frequency response looks like a sine wave of 1/3 of original sine

signal carrier frequency. The existence of a mid-frequency enhancement or "hill" in the

form function for the steady state backscattering of elastic shells has been noted by various

authors including Talmant, Uberall, Miller, and Dickey8 and Sammelmann, Trivett, and

HackmanI 6.17. The effect is interesting enough that it deserves further investigation.

7/
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5.3 Mid-frequency Enhancement! Ray model and Verification

First of all, we notice the arrival time of the echo. Relative to the specular response,

this particular echo always has a time delay of d -- 4-5, that is the time period necessary for

the signal to travel a distant equal to the 4 or 5 times of out radius of the shell in tms of

the speed of sound in water. To facilitate the understanding of the major scattering

mechanisms, the ray model analysis borrowed from Marston ,Kargl and Williamns 11,18,20

is simply restated here. Fig.7a shows the ray diagram for leaky Lamb waves where a trace-

velocity matching condition gives for ci > c

01 = arcsin (c/cl). (5.1 a)

Ray synthesis of form function has basically two parts, one is due to the specular

reflection and the other is the contribution of the variety of SEW. It can be written in the

following form where I denoted the class of SEW:

f fsp + f'=so + f=ao +ftao' + ... (5. 1b)

where f 1=a0 ' term is thought to be especially important for thin shells. Some authors 16' 17

use A; to denote the wave ao'. The geometric series for repeated leaky wave contributions

gives for the steady state scattering from a spherical sheU18,19

fl = -Grxl[-2(m - e1) O3il exp(iT1i)

1 + exp(-2xPj) exp(i2ikac/cj), (5.2)

where

il = 2ka[(c/cj) (x - 01) - cos0l] - r/2
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A" B"

D' C '

D19 C" • .

evanescent wave

Fig.7a. Ray diagram for contributions to backscattering due to various kinds of
surface wave ( of type 1) excited on an elastic spherical shell. Ray path ABECD is
the usual case where ci> c. Ray path A'BSE CD' and AA"B"E C"D" correspond
to cl = c (known &a "creeping wave") and cl < c (known as "trapped wave"). In the
case of cSt < 0, The energy follows the short path of ABCD without
cuivumnavigaing the shell.
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Aa

\ '0 \

%% %

,O V, V

Fig.Tb. The ray diagram for the specular reflection from an elastic spherical shell.
The point S is the vertex of the refracting surface. The ray AB infinitesimally close
to the z-axis is incident on the shell with impact parameter s. The ray ABC is the
ordinary specular ray: while ABDEF and ABDEGHI are the first two internal
specular reflection contributions. Intersection of the projection (dashed lines) of the
outgoing rays and the z-axis define locations of virtual point sources, Vn, which
describe local curvature of the wavefront associated with each ray. The specular
reflection contribution to the form function for backscattering is determined from a
superposition of the wavefields from the virtual sources.
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andl8 "20

and 8-2 IG 8 W c/c i 
(5.3)

Some comments on the nature of the specular reflection are appropriate. Fig.7b

shows the ray diagram for the external specular reflection and the other specular

contributions associated with the reverberation of longitudinal waves within the shell. The

point S is the vertex of the refracting surface. The ray AB is infinitesimally close to the z-

axis. The ray ABC is the external specular ray; while ABDEF and ABDEGHI are the first

two internal specular reflection contributions. At the internal surface, the rays are totally

reflected and the rays are partially reflected and/or transmitted at the water-shell interface.

Intersection of the projection (dashed lines) of the outgoing rays and the z-axis define

locations of virtual point sources, Vn, which describe local curvature of the wavefront

associated with each ray. For thin shells numerical computations of steady-state

scattering 19 suggest that it is satisfactory to neglect the multiple reverberations in the region

of the mid-frequency enhancement and to approximate the specular contribution is that due

to ray ABC.

Fig.8,9,10 calculated by Dr. Sun for a 2.5%-thick SS304 shell show how the

radiation damping parameter 01 (in np/radian), the phase velocity cl and the group velocity

cgj of aoso and ao' waves vary with ka. For the thickness of the shell we are considering

here these are the only relevant surface guided waves. The method of computing these

surface wave properties is based on applying the Watson transform methodology to the

exact elastic equations for shells as discussed in Refs. 12,13,and 20. In Fig.8, we see that

in the region of 34<x<62, P1 is near zero for ao and is large for so wave. Eq.(5.2) and

(5.3) tell us that the contribution to the form function due to a surface wave will be small if
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Pt value of the surface wave is either small (coupling coefficient GI will be small) or large

(big damping will kill it), hence only the ao' wave is important in this analysis. Fig.9 tells

us that the phase velocity for ao' in the ka range we are dealing with is very close to the

sound speed in water c, which means that we are near the coincident condition. Eq.(5.1b)

immediately gives 01 = ix,2 for c/ = c. In Fig.7a, a traveling path of the wave is drawn as

A'SE CD'. The wave first travels with speed of c straight along the ray A'B' and

couples with the surface of the shell in the vicinity of point B', then goes with speed of cgj

along a ray path BE C that lies along the periphery of the shell. Finally travels to D' with

speed c straight along the path CD'. This is the case of "creeping wave". For c/ < c, a

"trapped wave" exist where the wave is tunnelling into the shell in the form of an

evanescent wave as indicated by the rays A"B"E C"D" in Fig.7a. The terminology is that of

Ho and Felsen21.For both cases, the incident angle is taken to be an2. The applicability of

Eq.(5.1b) to steady state scattering from thin shells was recently demonstrated by Sun and

Marston 19. Inspection of Fig.9 shows that cl < c for the ao' wave which exhibits "trapped"

wave behavior at low frequencies becoming "creeping wave" like as ka is increased above

- 40.

Consider now the implication of Fig.7a to the scattering of tone bursts. The arrival

time of the burst follows from the inspection of Fig.7a. Since 01 = rr2 for creeping and

trapped waves the time delay of ao' wave Td relative to the specular reflection in terms of

the dimensionless time interval can be approximated as

Td =I+ X c /Cg(+ 1), (5.4)

where the actual time delay is td = Tda/c. Fig. 10 states that the group velocity for ao' is

close to and a little bit bigger than c. In the region of 34<x<62, cg/c - 1.38-1.03, which

corresponds to a Td value of 4.28 - 5.05. The property of cl and cgi for ao' wave was
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found to be common to other thin shells and hence the above analysis should also apply to

the general arrival time of the ao' wave burst for the 5%-thick SS440c shell. We see that

this simple approximation agrees with our previous observation in Fg.6.

To further test the validity of this ray model and investigate the backscanering under

the mid-frequency enhancement condition, we have made the computations for the

backscattering of bursts with various carrier frequencies. Since the available ray method

calculation by Sun is for the case of a 2.5% - thick SS304 shell, the same parameters were

chosen and listed in table 3. The carrier frequencies picked up were ka =34, 38, 42, 46,

50, 54, 58, 62. In order to measure the correct amplitude for the transient waves the

incident burst has to be long enough so that the near steady state response can be achieved

before the signal turns off. On the other hand, it could not be too long, otherwise

additional echoes would come in and make the measurement impossible. The establishment

of the steady state response has turned out to be slow; as a compromise, a 20-cycle burst

was finally chosen. The calculated transient backscattering are depicted in Fig. 11. For each

case, the amplitude of this particular type of wave relative to the specular echo were

measured by looking at the data presented in Table 4 and averaging the closest four

maximum values highlighted by the rectangular boxes. Table 5 provides the predicted

amplitude value by the ray model and that of present calculation for each ka value we

picked up. The amplitude measured from the transient backscattering is depicted by the

stars in Fig.12 where the ray model calculation has been drawn as a solid line in the same

figure for comparison. The ray model calculation was based on the following equation

I fi.,•m-oI = 8n1 ,exp(-1t) (53)

where rn = 0 indicates that the contribution is only due to the first radiation after

circumnavigating half the circle which is suitable to compare with the transient

I
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Maaia1 p (g/cm 3) cg (kims) cs (km/s)

SS304 7.570 5.675 3.141

Water 1.00 1.479

Table 3. Material parameters for stainless steel 304 shell and water.

'I\
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T P T P
6.596870 0.036035 6.606110 0.111537
6.615349 0.159312 6.624588 0.209079
6.633827 0.235192 6.643066 0.232162
6.652306 0.223170 6.661545 0.178535
6.670784 0.126900 6.680023 0.062583
6.689262 -0.012010 6.698502 -0.075965
6.707741 -0.142101 6.716980 -0.184319
6.726219 -0.216449 6.735458 -0.222948
6.744698 -0.208140 6.753937 -0.178558
6.763176 -0.123631 6.772415 -0.068047
6.781654 0.002376 6.790894 0.064782
6.800133 0.122427 6.809372 0.166800
6.818611 0.191209 [,8 27850 0.1986991
6.837090 0.181139 6.846329 0.148974
6.855568 0.095020 6.864807 0.036073
6.874046 -0.034133 6.883286 -0.098084
6.892525 -0.157116 6.901764 -0.202599
6.911003 -0.227852 [6.920242 -0.2372731
6.929482 -0.219966 6.938721 -0.188992
6.947960 -0.136223 6.957199 -0.076677
6.966438 -0.007875 6.975677 0.056634
6.984917 0.116522 6.994156 0.160240
7.003395 0.189328 7.012634 0.1947531
7.021873 0.182232 7.031113 0.147074
7.040352 0.097537 7.049591 0.035587
7.058830 -0.032350 7.068069 -0.096843
7.077309 -0.157209 7.086548 -0.199349
7.095787 -0.228534 17.105026 -0.2325351
7.114265 -0.218630 7.123505 -0.183318
7.132744 -0.131329 7.141983 -0.069772
7.151222 -0.000209 7.160461 0.065476
7.169701 0.124636 7.178940 0.171080
7.188179 0.195974 7.197418 0.206602
7.206657 0.187360 7.215897 0.158368
7.225136 0.102800 7.234375 0.044973
7.243614 -0.025200 7.252853 -0.089960
7.262093 -0.148125 7.271332 -0.194823
7.280571 -0.219536 7.289810 -0.229761
7.299049 -0.212095 7.308289 -0.181532
7.317528 -0.127805 7.326767 -0.068328

Table 4.1 Dam for backscartered wave under coincident condition with xo 34.0.

/
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T P T P
6.365273 -0.023188 6.373540 -0.238160
6.381806 -0.439772 6.390073 -0.597940
6.398339 -0.706256 6.406606 -0.741619
6.414872 -0.700890 6.423139 -0.604760
6.431405 -0.446606 6.439672 -0.246643
6.447938 -0.021616 6.456204 0.203273
6.464471 0.399340 6.472737 0.564193
6.481004 0.670664 6.489270 0.705618
6.497537 0.672829 6.505803 0.571213
6.514070 0.416703 6.522336 0.212836
6.530602 -0.011839 6.538869 -0.232127
6.547135 -0.438064 6.555402 -0.600266
6.563668 -0.707348 16.571935 -0.7434291
6.580201 -0.713637 6.588468 -0.615201
6.596734 -0.455063 6.605000 -0.257137
6.613267 -0.034457 6.621533 0.188746
6.629800 0.393084 6.638066 0.553324
6.646333 0.658783 16.654599 0.699054J

6.662866 0.665960 6.671132 0.565667
6.679399 0.410796 6.687665 0.209122
6.695931 -0.012120 6.704198 -0.236750
6.712464 -0.437461 6.720731 -0.602479
6.728997 -0.705638 F6.737264 -0.7458431
6.745530 -0.713730 6.753797 -0.614909
6.762063 -0.457097 6.770329 -0.258647
6.778596 -0.036101 6.786862 0.187598
6.795129 0.390068 6.803395 0.551739
6.811662 0.659242 16.819928 0.69703_5
6.828195 0.667313 6.836461 0.568729
6.844728 0.413183 6.852994 0.214244
6.861260 -0.005725 6.869527 -0.229921
6.877793 -0.431122 6.886060 -0.593886
6.894326 -0.699590 6.902593 -0.740077
6.910859 -0.707751 6.919126 -0.611882
6.927392 -0.453401 6.935658 -0.257104
6.943925 -0.033302 6.952191 0.188291
6.960458 0.393116 6.968724 0.554449
6.976991 0.662974 6.985257 0.702523
6.993524 0.672867 7.001790 0.577343
7.010056 0.419696 7.018323 0.222881
7.026589 0.002894 7.034856 -0.220533
7.043122 -0.426468 7.051389 -0.587425
7.059655 -0.694408 7.067922 -0.734579

Table 4.2 Data for backscauered wave under coincident condition with xo = 38.0.
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T- P T P
6.350278 0.55923! 6.357758 1.161832
6.365237 1.646473 6.372717 1.967741
6.380197 2.097844 6.387676 2.019434
6.395156 1.732595 6.402636 1.275286
6.410115 0.689955 6.417595 0.042314
6.425075 -0.617974 6.432554 -1.220983
6.440034 -1.708334 6.447514 -2.024584
6.454993 -2.145017 6.462473 -2.060061
6.469953 -1.777786 6.477432 -1.320424
6.484912 -0.730696 6.492392 -0.079298
6.499871 0.582484 6.507351 1.179777
6.514831 1.670031 6.522310 1.985994
6.529790 2.108430 6.537270 2.020617
6.544749 1.737244 6.552229 1.280616
6.559709 0.691401 6.567188 0.039001
6.574668 -0.622499 6.582148 -1.221521
6.589627 -1.709781 6.597107 -2.025415
6.604587 -2.147242 6.612066 -2.060807
6.619546 -1.774627 6.627026 -1.316886
6.634505 -0.727802 6.641985 -0.075336
6.649465 0.585943 6.656944 1.189285
6.664424 1.671964 6.671904 1.991014
16.679383 2.1095211 6.686863 2.026320
6.694343 1.737120 6.701822 1.275133
6.709302 0.690124 6.716782 0.034059
6.724261 -0.627559 6.731741 -1.234824
6.739221 -1.717731 6.746700 -2.035459
16.754180 -2.1584581 6.761660 -2.069981
6.769139 -1.785295 6.776619 -1.325667
6.784099 -0.735967 6.791578 -0.078363
6.799058 0.587846 6.806538 1.188315
6.814017 1.675397 6.821497 1.995219
16.828977 2.1168501 6.836456 2.034254
6.843936 1.746574 6.851416 1.286531
6.858895 0.699010 6.866375 0.039062
6.873855 -0.623633 6.881334 -1.229516
6.888814 -1.714690 6.896294 -2.033982
16.903773 -2.160228 6.911253 -2.072351
6.918733 -1.788444 6.926212 -1.330139
6.933692 -0.741370 6.941172 -0.084951
6.948651 0.580860 6.956131 1.187328
6.963611 1.674013 6.971090 1.997989
6.978570 2.120455 6.986050 2.036927
6.993529 1.750979 7.001009 1.290996

Table 4.3 Data fo backscattered wave undr coincident condition with xo = 42.0.
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6.597102 -0.025907 6.603931 -0.973626
6.610761 -1.825780 6.617590 -2.503560
6.624419 -2.936231 6.631248 -3.079511
6.638078 -2.929365 6.644907 -2.493511
6.651736 -1.812736 6.658566 -0.959201
6.665395 -0.012516 6.672224 0.933062
6.679053 1.785619 6.685883 2.464755
6.692712 2.897599 6.699541 3.043399
6.706370 2.893751 6.713200 2.455397
6.720029 1.773091 6.726858 0.918041
6.733687 -0.031260 6.740517 -0.978651
6.747346 -1.832103 6.754175 -2.510407
6.761004 -2.942909 6.767834 -3.08966o
6.774663 -2.939170 6.781492 -2.501066
6.788321 -1.819549 6.795151 -0.964964
6.801980 -0.016426 6.808809 0.932137
6.815639 1.786369 6.822468 2.464557
6.829297 2.899034 16.836126 3.047814L
6.842956 2.897290 6.849785 2.459860
6.856614 1.779217 6.863443 0.924893
.6.870273 -0.024116 6.877102 -0.973685
6.883931 -1.826900 6.890760 -2.505418
6.897590 -2.941862 16.904419 -3.0899791
6.911248 -2.938947 6.918077 -2.503733
6.924907 -1.823455 6.931736 -0.967920
6.938565 -0.020529 6.945395 0.928623
6.952224 1.783107 6.959053 2.461402
6.965882 2.898016 16.972712 3.047017
6.979541 2.896656 6.986370 2.462214
6.993199 1.782508 7.000029 0.927581
7.006858 -0.018170 7.013687 -0.966861
7.020516 -1.820955 7.027346 -2.497132
7.034175 -2.933331 7.041004 -3.032415
7.047833 -2.930409 7.054663 -2.495530
7.061492 -1.816685 7.068321 -0.960380
7.075150 -0.013899 7.081980 0.934126
7.088809 1.790331 7.095638 2.468091
7.102468 2.904951 7.109297 3.057021
7.116126 2.907706 7.122955 2.474592
7.129785 1.799615 7.136614 0.947236

Table 4.4 Data for backscatterd wave under coincident condition with X = 46.0.
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6.504855 0.011539 6.509044 -0.436678
6.513232 -0.867708 6.517421 -1.262138
6.521609 -1.602292 6.525798 -1.873637
6.529986 -2.064192 6.534175 -2.164548
6.538363 -2.169625 6.542552 -2.080113
6.546741 -1.901734 6.550929 -1.643118
6.555118 -1.314392 6.559306 -0.927864
6.563495 -0.499779 6.567683 -0.050313
6.571872 0.399248 6.576060 0.829382
6.580249 1.222500 6.584437 1.561802
6.588626 1.831941 6.592814 2.021164
6.597003 2.121951 i.122..2989
6.605380 2.043390 6.609569 1.865207
6.613757 1.603903 6.617946 1.272740
6.622134 0.886852 6.626323 0.461651
6.630511 0.013940 6.634700 -0.436558
6.638888 -0.868439 6.643077 -1.262070
6.647265 -1.601197 6.651454 -1.871750
6.655643 -2.061283 6.659831 -2.161029
M6.664020 -2.1675461 6.668208 -2.081394
6.672397 -1.905348 6.676585 -1.645490
6.680774 -1.313410 6.684962 -0.925579
6.689151 -0.500037 6.693339 -0.054200
6.697528 0.394307 6.701716 0.826047
6.705905 1.220548 6.710093 1.559359
6.714282 1.828331 6.718471 2.017086
6.722659 2.117488 6=726848 2.124104
6.731036 2.036243 6.735225 1.858479
6.739413 1.598993 6.743602 1.268452
6.747790 0.880678 6.751979 0.453133
6.756167 0.005424 6.760356 -0.442877
6.764544 -0.873113 6.768733 -1.267176
6.772922 -1.607440 6.777110 -1.877936
6.781299 -2.066348 6.785487 -2.165199
1.789676 -2.171248f 6.793864 -2.084203
6.798053 -1.906754 6.802241 -1.645953
6.806430 -1.313712 6.810518 -0.925399
6.814807 -0.498067 6.818995 -0.049818
6.823184 0.400200 6.827373 0.832200

Table 4.5 Data for backscattered wave under coincident condition with xO = 50.0.
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6.382811 0.035442 6.386688 0.209292
6.390566 0.372359 6.394444 0.518352
6.398321 0.641011 6.402199 0.735356
6.406076 0.798002 6.409954 0.826164
6.413832 0.817231 6.417709 0.769973
6.421587 0.686021 6.425465 0.569997
6.429342 0.428413 6.433220 0.268459
6.437098 0.097275 6.440975 -0.078245
6.444853 -0.251158 6.448730 -0.414271
6.452608 -0.560668 6.456486 -0.684435
6.460363 -0.780417 6.464241 -0.843409
16.468119 -0.868761 6.471996 -0.854340
6.475874 -0.802352 6.479752 -0.717329
6.483629 -0.603766 6.487507 -0.465459
6.491385 -0.307072 6.495262 -0.135321
6.499140 0.041802 6.503017 0.216520
6.506895 0.381673 6.510773 0.530038
6.514650 0.654073 6.518528 0.747090
6.522406 0.805060 .5 6283 0.8271531
6.530161 0.814186 6.534039 0.766641
6.537916 0.684721 6.541794 0.570449
6.545671 0.429062 6.549549 0.267968
6.553427 0.094795 6.557304 -0.083125
6.561182 -0.258108 6.565060 -0.422186
6.568937 -0.568257 6.572815 -0.690728
6.576693 -0.784984 6.580570 -0.846725
16.584448 -0.87226 j 6.588326 -0.859543
6.592203 -0.808948 6.596081 -0.723501
6.599958 -0.608078 6.603836 -0.468155
6.607714 -0.309112 6.611591 -0.136769
6.615469 0.041721 6.619347 0.21E022
6.623224 0.383811 6.627102 0.531717
6.630980 0.655401 6.634857 0.749476
6.638735 0.809840 .16642612 0.834087L
6.646490 0.821553 6.650368 0.773008
6.654245 0.690296 6.658123 0.576243
6.662001 0.435166 6.665878 0.273601
6.669756 0.100009 6.673634 -0.077046
6.677511 -0.250588 6.681389 -0.414793
6.685266 -0.563140 6.689144 -0.687918
6.693022 -0.782125 6.696899 -0.841541
6.700777 -0.864707 6.704655 -0.851418
6.708532 -0.801931 6.712410 -0.717605
6.716288 -0.601830 6.720165 -0.460004
6.724043 -0.298634 6.727921 -0.124493

Table 4.6 Data for backscattered wave under coincident condition with xo = 54.0.
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6.074376 -0.004603 6.078709 -0.073365
6.083041 -0.138927 6.087374 -0.198649
6.091706 -0.247784 6.096039 -0.281372
6.100371 -0.297811 L6.104704 -0.298039J
6.109036 -0.281832 6.113369 -0.247893
6.117702 -0.197849 6.122034 -0.137058
6.126367 -0.070412 6.130699 -0.000069
6.135032 0.071267 6.139364 0.137669
6.143697 0.192945 6.148029 0,234435
6.152362 0.261705 6.i6694 01.2731i01
6.161027 0.266137 6.165359 0.240549
6.169692 0.199254 6.174025 0.146085
6.178357 0.083878 6.182690 0.015065
6.187022 -0.056422 6.191355 -0.124831
6.195687 -0.184968 6.200020 -0.234247
6.204352 -Q.271104 6.208685 -0.292394
6.213017. -0.294801j 6.217350 -0.278369
6.221683 -0.245890 6.226015 -0.199158
6.230348 -0.138985 6.234680 -0.068894
6.239013 0.004546 6.243345 0.075609
6.247678 0.140881 6.252010 0.196614

&.256343 0.237589 6.260675 0.259815
L6.265008 0.2627-2- 6.269341 0.247984
6.273673 0.217343 6.278006 0.172367
6.282338 0.115705 6.286671 0.051692

Table 4.7 Data for backscattered wave under coincident condition with xo = 58.0.
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5.962266 -0.015721 5.966319 -0.047572
5.970372 -0.077883 5.974425 -0.103375
5.978478 -0.122413 5.982532 -0.135460
5.986585 -0.143257 15.990638 -0.145075]
5.994691 -0.139266 5.998744 -0.125686
6.002797 -0.106693 6.006850 -0.084866
6.010903 -0.060525 6.014956 -0.033032
6.019010 -0.003971 6.023063 0.023066
6.027116 0.045946 6.031169 0.065132
6.035222 0.080809 6.039275 0.090985

16.043328 0.0936451 6.047381 0.089184
6.051435 0.079337 6.055488 0.064762
6.059541 0.045096 6.063594 0.020878
6.067647 -0.005789 6.071700 -0.032454
6.075753 -0.057588 6.079806 -0.080598
6.083859 -0.100811 6.087913 -0.116550
6.091966 -0.125670 r6.096019 -0.1273191
6.100072 -0.122697 6.104125 -0.113186
6.108178 -0.098435 5.112231 -0.077523
6.116284 -0.051724 6.120337 -0.024494
6.124391 0.001606 6.128444 0.026482
6.132497 0.050305 6.136550 0.071073
6.140603 0.085678 6.144656 0.092797
16.148709 0.0934511 6.152762 0.088778
6.156816 0.078462 6.160869 0.061804
6.164922 0.039610 6.168975 0.014311

Table 4.8 Data for backscattered wave under coincident condition with xo = 62.0.
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x Amplitude by Amplitude by Amplitude by
may model modified may model PWS

34.0 0.169133 0.140835 0.2158

38.0 0.768413 0.667904 0.7213

42.0 2.132889 1.919801 2.1363

46.0 3.167944 2.930751 3.0686

50.0 2.394250 2.260151 2.1482

54.0 1.088952 1.041594 0.8506

58.0 0.433748 0.41805 1 0.2822

62.0 0.195738 0.189482 0.1149

Table 5. The amplitudes of ar5 wave for SS30-4 shell by ray methods and PWS calculation.
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Fig.12a. Comparison of the amplitude for the ray model and PWS calculation. The solidcurve is for the ray model calculation which is based on the Eq.(5.5); while the dots are for
the PWS computation.
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Fig. 12b. Comparison of the amplitude for the ray model and PWS calculation. The solid
curve is for the ray model calculation which is based on a modification to Eq.(5.5) in
which c/cj is omitted; while the dots are for the PWS computation. Comparison of Fig.12a
and 12b shows that the exact ray model is somewhere between these two.
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computations. The large second echo visible in Fig.1 Id is seen to be the contribution from

the ao' ray which has circumnavigated only the backside of the shell. Excellent agreement

of the resulis in terms of this simple calculation is a manifestation of the validity of the ray

model. Of course, so can still be seen especially in the case of short bursts where we have

more low frequency components as presented in the appendix A. In addition, the overlap of

weak ao wave on ao' can also be seen at high frequencies.

5.4 Reverherations of longitudinal wave'- .'.nd resonance scattrin•..fluid

Next, we turn our attention to the resonance backscattering of shells. Consider the

longitudinal resonance conditions 1120

kLh = nx (n = 1,2,...) (5.6)

kLh = (n+l/2)it (n = 0,1,...) , (5.7)

where h is the thickness of the shell. These conditions are obtained from the requirement of

constructive interference of consecutive internally reflected waves upon transmission back

into the water. These reflections are shown in Fig.7b. Eq.(5.6) corresponds to the usual

case considered here where the acoustic impedance of the elastic material pecl is greater than

the impedance of the water pc while Eq.(5.7) is valid for the case where Pec is less than

pc. First assume an ideal fluid shell whose physical constants are the same as the real

aluminum !:hell (to be called aluminum/fluid shell) and are listed in Table 6b. By

investigating such an ideal object, we are able to get rid of the effects due to elastic surface

waves and transverse waves and concentrate on the longitudinal resonance echoes. The
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Maur il p (g/cm3) ct (kin/s) cs (knu/s)

Aluminum 2.70 6.42 3.04

Water 1.00 1.4825

Table 6a. Material parameters for Aluminum shell and water.

Fluid/water Pe (g/cm 3) c, (kim/s) c (km/s) p (g/cm 3)

Aluminum/water 2.70 6.42 1.4825 1.00

SS44OC/water 7.84 5.854 1.479 1.00

Table 6b. Material parameters for fluid shells.
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form functions of a 4%-thick aluminum/fluid shell is shown in Fig. 13 for ci - 6.42 km/s

where the form function for a real aluminum shell is also plotted for comparison. Eq.(5.6)

predicts a longitudinal resonance at xLr - 340. The minimum in both cases is a

manifestation of this longitudinal resonance. This dip has been modeled in detail by a ray

method1 1. The cause of the large peak near x = 302 for the real aluminum shell has not

been well understood yet. It has been explained as the prompt radiation in Ref.20 and

describtd as a "thickness quasiresonance" in Ref.17. The form function for a 16.2%-thick

$S440c/fluid shell is shown in Fig.14. This time Eq.(5.6) predicts a longitudinal resonance

at xLr- 76.8. Again a dip near x = 76.8 in Fig.14 corresponds to the presence of the

longitudinal resonance. The computed backscattered waves for the aluminum/fluid shell at

xo = 302 and 340 are both shown in Fig.15. Various burst lengths have been tested.

Presented in Fig.15a and 15b are the case of 20-cycle burst. For reference, some

additional figures are presented in the Appendix B. The results are just expected. For xo =

340, the decay of the echoes immediately following the specular reflection is the

manifestation of a longitudinal resonance. The form function predicts a minimum amplitude

of 0.17, as incident burst gets longer, the backscattered echo does reach the limit as shown

in Fig.15c where a 40-cycle burst has been used. The measured amplitude is 0.17 which

agree with the form function prediction and the region of measurement has been marked.

We don't see anything anomalous from the xo = 302 plot, which demonstrates that the

anomaly around x = 302 in the elastic form function is not the direct effect of the

longitudinal re.onance. We then computed the backscattering for the SS44Oc/fluid shell for

xo = 71 and 76.8. The reason we are interested in the case of xo = 71 will become clear

later in Section 5.5. The results are Fig. 16 and again are fully expected. The decay of the

echoes corresponds to the longitudinal resonance which is not responsible for any possible

anomalous behavior around x = 71. As in the case of Aluminum/fluid shell, we checked the
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FORM FUNCTION FOR SPHERICAL SHELL

Lo,
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Fig. 13. Form functions of '4%-thick aluminum/fluid(a) and aluminum(b) shells.
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minimum amplitude which is predicted by the form function to be 0.63. The near steady

state amplitude measured frora Fig.16b is 0.64 which is very close to the form function

prediction.

5.5 Reverberations of longitudinal waves and resonance seittering..elasti_

Next we investigate the on resonance and below resonance backscattering for a real

aluminum shell. Results for a 20-cycle incident burst for xo - 302 and 340 are depicted

in Fig.17. The buildup and decay at the very early stage of the backscattered wave under

the constructive and destructive resonance conditions are both evident. The form function

predicts a maximum amplitude of 4.26 times that of the incident bursts. We do see that as

input burst gets longer, the amplitude of the backscattering reaches the limit as shown in

Fig. 17c.

The form function calculated for the SS440c shell using the current ray model fails

to recover the form function from the exact PWS calculation in the x range of 70-74 20.

One possible cause of the anomalous behavior near x = 71 is due to the fact that the phase

velocity becomes large for the sl Lamb wave, hence the trace-velocity matching angle 01

defined in Eq.(5.1) becomes small and the group velocity for the sl Lamb wave becomes

negative around x = 71. It has been suggested (P.LMarston, private communication) that

the energy of the burst is taking a short path and travelling along the path of BC in Fig.7a

directly without circumnavigating the shell at all. This is one ray mechanism for producing

prompt radiation, which was not included in the analysis in Ref.20. The computed

backscauered waves from a real SS440C shell for xo = 71.0 and 76.8 are shown in Fig.18
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which is far more complicated than the case of a SS44Oc/fluid shell. Difference between

elastic and fluid shell results is rapidly evident in the time domain. It is seen by T - 1. 5,

which means there is a prompt mechanism for scatte•ing in the elastic shell not included in

the fluid case. We also see that the prompt radiation may be out of phase with the specular

reflection therefore the effect can be either constructive or destructive, which is the case of

aluminum shell and SS440C shell respectively.
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Chapter 6

Discussion and Conclusion

The canonical problem of the backscatzering of a short tone burst from elastic

spherical shells has been computarionally modeled and transient scattered waves has been

calculated. The algorithms used are simple trapezoidal method to calculate the Fourier

integral and FFT routines. Both methods have turned out to be equally successful, except

that the physical mranings sre more clear in the former case while the latter can do the

transformations much faster. Most results presented in the report are from the calculation of

FFT routines. No fundamental complications is in this approach. Any imperfection in the

calculation appears to be due to the necessity of assuming a finite bandwidth. This was

taken to be much larger than the carrier frequency for all cases shown.

Previous measurements by Williams and Marston for the tungsten carbide sphere

and by S. Kargl and P.L.Marston for the 16.2%-thick elastic SS440c shell have been

confirmed. Along with Fourier Transform calculations, a ray model of Sun and Marston 19

for the backscattering from thin shells has been carefully investigated. The results

demonstrate that the thin elastic shells like 5%-thick SS440c and 2.5%-thick SS304 shells

support ao' wave which can be "creeping" and "trapped" waves. The phase and group

velocities for ao' are both close to the sound speed in the surrounding water. This particular

surface wave contributes to the form function in the form of a big hump or mid-frequency

enhancement for thin shells. The central frequency of the hump varies inversely with the

thickness of the shell but the backscattered echoes due to the effect have an almost constant

arrival time (in units of a/c) relative to the specular reflection. In the system point of view,



86

the scatterer is like a band-pass filter. The frequency components in the range of the hump

are relatively enhanced. Because of its large magnitude, this enhancement and other

properties of the associate-d surface wave may be of great practical use. Appendix C shows

that the enhancement also contributes in a distinct way to the sphere's impulse response.

The thickness resonance conditions are also examined by computing the

backscattering under those conditions. For the fluid stainless steel and aluminum shell

cases, the agreement between the calculated backscattering and the prediction by PWS

form function under the longitudinal thickness resonance is good. Since the fluid shell case

has been well modeled by a ray method, this also indicates a good agreement with the ray

prediction. A prompt radiation that is currently being modeled appears to be important in

elastic shell cases and the amplitude of the computed backscattering for the aluminum shell

does reach the limit predicted by the PWS form function. The case of a thick elastic

SS440C shell (16.2%-thick) is more complicated in that the prompt radiation appears to

interfere destructively with the specular reflection.



Appendix

A. List of programs

Al. Program computing the form function of elastic spheres

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCcc
C C
C THIS PROGRAM CALCULATES FORM FUNCTIONS USING CHIVERS C
C PROGRAMS. C
C C
cCCCCCCCCCCCcccccc~cCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
C

IMPLICIT DOUBLE PRECISION (P)
DIMENSION PB(800) ,PCB(800) ,PSB(800)

C REAL KAM
COMPLEX CFAC
DATA RHO,VC,VS,VW/13 .80,6860.0,4185.0,1476.0/

c data rho,vc,vs,vw/7.70, 5960.0,3240.0,1410.0/
RH=1.0/ (RHO*2.0)
RAT1= VW/VC
RAT2= VW/VS
XMAX= 400.0
X0=0.0
K= 0

10 k=k+l
x=x0+k*O. 05
T=1. 25*X
Xl1RAT 1* X
X2=RAT2 *X
X2S=X2**2
XSN=SIN (X)
XCS=COS (X)
CALL BESS(X,PB,T)
TERM= (XSN/X)/PB(1)
BN1= PB(2)*TERM
CALL BESS(X1,PCB,T)
CBN1= PCB(2)/PCB(l)
CALL BESS(X2,PSB,T)
SNNO=-XCS/X
XSIGN=1.0
SBET=0. 0
SALP=0. 0
N1=0
SUM=0. 0
CALL STVAL(X,X1,X2 ,ALPN, BETN,CBN1, BN1,SNN1,RH,XSN,X2S,XCS)

20 CONTINUE
CE-N2= PCB(N+3)/PCB(N+2)
Q=FLOAT (N+1)
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ANUM-(Q*CBN1) -(Xl*CBN2)
ADEN-( (Q-1.0) *CBN1)-(Xl*CBN2)
DNUM-(((X2S/2.O)-Q*(Q-1.0))*CBN1)-(2.O*Xl*CBN2)
SBN1-1.0
SBN2- PSB(id+3)/PSB(N+2)
BNUM-(2.0*Q*(Q+1.0) )*SBN1
EDEN- (((2.0* (Q**2) ) -(X2S+2 .0)) *SBN1) +(2. 0*SBN2*X2)
ENUM=2.0*Q*(Q+1.O)*(((1.0-Q)*SBN1)+(X2*SBN2))
FN1=X2S*RH* ((ANUM/ADEN) -(BNUM/EDEN) )/ ((DNUM/ADEN)

&-(ENUM i/EDEN))
30 CONTINUE

-BN2-.. PB(N+3)*TERM
GN1=( (FN1-Q) *BN1)+(X*BN2)
BN1=BN2
SNN2= (((2. 0*Q) +1.0) *SNN1/X) -SNNO
HN1-( (FN1-Q) *SNN1)+(X*SNN2)
SNNO=SNN1
SNN1-SNN2
DEN=(GN1**2)+(HN1**2)
ALPN1=- (GN1**2) /DEN
BETN1=- (GN1*HN1) /DEN
ADD=Q* (ALPN+ALPN1+(2.0*ALPN*ALPN1)+(2.0*BETN*BETN1))
FAC=XSIGN* (2. 0*Q-1. 0)
SALP=SALP+FAC*ALPN
SBET=SBET+FAC* BETN
ALPN=ALPN1
BETN=BETN1
SUM=SUM+ADD
IF ((ABS(ADD/SUM)).LT.1.OE-8) GO TO 90
J=O
N=N±1
XSIGN=-XSIGN
GO TO 20

90 J=J+1
IF (J.EQ.5) GO TO 100
N=N+1
XSIGN=-XSIGN
GO TO 20

100 YP=(-4.0/(X**2))*SUM
FAC=-XSIGN* (2. 0*Q+1.0)
SALP=SALP+FAC*ALPN1
S BET=S BET+ FAC* BETN 1
CFAC=CMPLX(SBET, -SALP) *(2. 0/X)
FINF=CABS (CFAC)

C KAM(K)=X
C FABS (K) =FINF
C WRITE(7,40) KAM(K),FABS(K)

WRITE(7,40) X,CFAC
40 FORMAT( 3fl2.6)

IF(X.Gt.XMAX) GO TO 50
GO TO 10

50 CONTINUE
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STOP
END

C

SUBROUTINE STVAL(X,Xl,X2,ALPN,BETN,CBNI,BN1,SNN1,RH,XSN,X2S
&,XCS)
TERM=CBN1 *X1
FN=-X2S*RH*TERM/ ((X2S/2 .0) -2. 0*TERM)
SNN1=-( (XCS/(X**2) )+(XSN/X))
GN-(FN*(XSN/X) )+(BN1*X)
HN=(- (FN*XCS) /X) +(X*SNN1)
DEN= (GN**2) +(HN**2)
ALPN=- (GN**2) /DEN
BETN=- (GN*HN) /DEN
RETURN
END

C
C

SUBROUTINE BESS(X,PA,T)
IMPLICIT DOUBLE PRECISION (P)
DIMENSION PA(800)
L=IFIX(T)+15
PA(L+2)=0.0
PA(L+1) =1.OE-30
DO 10 I=1,L
M=(L+1) -I
R=FLOAT (M)
PA(M)-(((2.0*R)+1.0)*PA(M+1)/X)-PA(M+2)

10 CONTINUE
RETURN
END
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A2. Program computing the form function of elastic spherical shells

REAL*8 X,XT,XL,QT,QL,BARHOIIRHOEXMIN,XMAX,DX,JX(900),
+ JXT(900),JXL(900),JQT(900),JQL(900),YX(900),YXT(900),
+ YXL(900),YQT(900),YQL(900),D(5,5),DI(5,5),
+ C,DETDR,DETDI,
+ CT,CL,XTS,QTS,DNR,DNI,COEF,FORM,SUMR,SUMI
INTEGER NMAX,I,J,MAX,K,INDX(S)
C-i. 4790D0
CT-3. 1410D0
CL-5. 6750D0
RHO-i. ODO
RHOE=7. 570D0
BA-0. 9750D0

XMIN-4 78. ODO
XMAX-480. ODO
X=XMIN
DX-0. 050D0

MAX=INT( (XMAX-XMIN)/DX)
DO 1000 I-1, MAX

X-X+DX
XT-X*C/CT
XL=X*C/CL
QT=XT* BA
QL-XL* BA
QTS=QT*QT
XTS-XT*XT

IF ( (0.20 .LT. X) .AND. (X .LT. 8.0)) THEN
NMAX-2+NINT(X+4.o*DEXP(DLOG(X)/3.o))

ELSE
NMAX-3+NINT(X+4.05*DEXP(DLOG(X)/3.0))

ENDIF

CALL BESSEL(NMAX+2 ,X,JX)
CALL BESSEL(NMAX+2 ,XT,JXT)
CALL BESSEL(NMAX+2, XL,JXL)
CALL BESSEL (NMAX+2, QT, JQT)
CALL BESSEL(NMAX+2 ,QL,JQL)

CALL NEUMANN (NMAX+2 ,X, YX)
CALL NEUMANN (NMAX+2 ,XL, YXL)
CALL NEUMANN(NMAX+2 ,XT, YXT)
CALL NEUMANN(NMAX+2,QL,YQL)
CALL NEUMANN (NMAX+2 ,QT, YQT)

SUMR=0. 0
SUMI=0. 0
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DO 500 J-1, NNAX
FJ-DBLE (J-1)
0(1, 1)-(RHO/RHOE) *XTS*JX(J)
D(1,2)-(2.O*FJ*(FJ-1.O)-XTS)*JXL(J)
D(1, 2) =0(1, 2) +4 *0*XL*JXL (J+1)
D(1, 3)- (2.O*FJ* (FJ-1. 0) -XTS )*YXL (J)
0(1, 3) =D( 1,3) +4.0*XL*YXL(J+l)

D(1, 4) =2.0*FJ* (FJ+1) *0(1, 4)
D(1,5)-(FJ-1.0) *YXT(J)-XT*YXT(J+1)
D(1,5)-2.0*FJ*(FJ+1) *0(1,5)
0(2, 1)=-FJ*JX(J)i.X*JX(J+l)
0(2,2)-FJ*JXL(J) -XL*JXL(J+1)
0(2, 3)=FJ*YXL(J)-XL*YXL(J+l)
D(2,4)=FJ*(FJ+1.0) *JXT(J)
0(2,5)=FJ* (FJ+1. 0) *YXT(J)
0(3, 1) =0 000
D(3,2)=2.0*((1.0-FJ)*JXL(J)+XL*JXL(J+1))
0(3, 3) =2.0* ((1. 0-FJ) *YXL (J) +XL*YXL (J+1))
D(3,4)=(XTS-2.0*(FJ**2)+2.0)*JXT(J)-2.0*XT*JXT(J+l)
D(3,5)=(XTS-2.0*(FJ**2)+2.0)*YXT(J)-2.0*XT*YXT(J+l)
O (4 ,1) =0 000
D(4,2)=(2.0*FJ*(FJ-1.o)..QTS)*JQL(J)
0(4,2) =0(4, 2) +4. O*QL*JQL(J+1)
D(4,3)=(2.0*FJ*(FJ-1.0)-QTS)*YQL(J)
0(4,3) =0(4,3) +4. 0*QL*YQL(J+1)
D(4, 4) =2.0*FJ* (FJ+1. 0) *( (FJ-1. 0) *JQT (J) -QT*JQT (J+1))
D(4,5)=2.0*FJ*(FJ+1.0)*((FJ-1.o)*YQT(J)-QT*YQT(J+1))
D (5 ,1) =0 000
D(5, 2) =2 . * ((1. 0-FJ) *JQL(J) +QL*JQL (J+1))
0(5, 3) =2 .0*( (1. 0-FJ) *YQL (J) +QL*YQL (J+1))
D(5,4)=(QTS-2.0*(FJ**2)+2.o)*JQT(J)-2.o*QT*JQT(J+l)
0(5, 5)= (QTS-2. 0* (FJ**2) +2. 0) *YQT (J) -2 . *QT*YQT (J+1)

DI(1, 1)=(RHO/RHOE) *XTS*YX(J)
D1(2, 1)=-FJ*YX(J)+X*YX(J+1)
DI (3, 1) =0.000D
01(4,1)=0. 000
DI(5,1)=0.000
DO 200 K=2, 5

DI (1,K)=D(1,K)
DI (2,K)=D(2,K)
DI (3, K) =D(3, K)
DI (4, K) =D(4, K)
DI (5, K) =D(5, K)

200 CONTINUE

CALL LUDCMP(D, 5,5, INDX, DETDR)
CALL LUDCMP(DI, 5,5,INDX,DETDI)

DO 300 K=1, 5
DETDR=DETDR*D(K, K)
DETDI=DETDI*DI (K, K)
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300 CONTINUE
DNR-DETDR
DNI-DETDI
COEFum((-1.0)**(J+1))*(2.0*FJ+1.0)
SUMR-SUMR+COEF* (DNI/ (DNR+DNI* (DNI/DNR)))
SUMI-SUMI+COEF* (DNR/ (DNR+DNI* (DNI/DNR)))

500 -CONTINUF
FORMý-'(2.'0/"X) DSQRT(SUMR**2+SUMI**2)

SUMR- SUMR*2.0/X
SUMI- SUMI*2.0/X

WRITE(7,2000) X,SUMR,SUMI
1000 CONTINUE
2000 FORMAT(3F12.6)

END

SUBROUTINE NEUMANN(N, X, YN)

REAL*8 X,YN(900)
INTEGER I,N
IF ( (X .LT. 0.0) .OR. (N .LT. 2) ) THEN
WRITE(6,*) 'FAILURE IN NEUMANN FCN ROUTINE'
GOTO 30
ENDIF
YN(l) ,_DCOS(X)/X
YN(2)--DCOS(X)/(X**2) -DSIN(X)/X
DO 10 I=1,N-1
YN(I+2)-((2.0*DBLE(I-1)+3.0)/X)*YN(I+1)-YN(I)

10 CONTINUE
30 RETURN

END

SUBROUTINE BESSEL(N, X,JN)

REAL*8 X,JN(900),RATIO,JO,JMX,JMX1
INTEGER I,MAX,N,NT
JMX=1. 0
JMX1=1. OD-100
MAX=N+20
IF ( (X .LT. 0.0) .OR. (N .GT. 9,0) ) THEN
WRITE(G,*) 'FAILURE IN BESSEL FCN ROUTINE'
GOTO 90
ENDIF
JO=DS IN (X) IX
IF (N .GT. INT(X)) THEN
DO 10 I=1,MAX-1

NT=MAX- I
JN(NT)=((2.O*DBLE(NT)+1.0)/X)*JMX-JMXI
JMX1=JMX
JMX=JN (NT)

10 CONTINUE
RATIO=JO/JN (1)
DO 20 I=1,N+1

JN(I)=RATIO*JN(I)



93

20 CONTINUE
ELSE
JN( 1) J0
JN(2)=DSIN(X)/(X**2) -DCOS(X)/X
DO 35 1-1, N-2

JN(I+2)=((2.0*DBLE(I)+1.0)/X)*JN(I+1)-JN(I)
35 CONTINUE

ENDIF
90 RETURN

END

SUBROUTINE LUDCMP(, N,NP, INDX, D)

IMPLICIT REAL*8 (A-H, O-Z)
PARAMETER(NMAX=100, TINY=1.OD-100)
DIMENSION A(NP,NP) ,INDX(N) ,VV(NMAX)
D=1.0
DO 12 1=1, N

AAMAX=0.0
DO 11 J=1, N
IF (DABS(A(I,J)) .GT. AAMAX) AAMAX=DABS(A(I,J))

11 CONTINUE
IF (AAMAX .EQ. 0.0) PAUSE 'SINGULAR MATRIX'
VV (I) =1.0O/AAYAX

12 CONTINUE
DO 19 J1l, N
IF (J .GT. 1) THEN

DO 14 I=l, J-1
SUM=A(I,J)
IF (I .GT. 1) THEN

DO 13 K=1, I-i
SUM=SUM-A(I,K) *A(K,J)

13 CONTINUE
A(I ,J) =SUM

ENDIF
14 CONTINUE

ENDIF
AAMAX=0.0
DO 16 I=J, N

SUM=A(I ,J)
IF (J .GT. 1) THEN
DO 15 K=1, J-1

SUM=SUM-A(I,K) *A(K,J)
15 CONTINUE

A(I,J)=SUM
ENDIF
DUM=VV(I) *DABS (SUM)
IF (DUM .GE. AAMAX) THEN

IMAX=I
AAMAX=DUM

END IF
16 CONTINUE

IF (J .NE. IMAX) THEN
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DO 17 K-1, N
DUM-A(IMAX,X)
A(IMAX,K)-A(J,K)
A(J,K)-DUM

17 CONTINUE
D= -D
VV (IMAX) -VV (J)

ENDIF
INDX (J) -IMAX
IF.(J _..NE.. N) THEN

IF (A(J,J) .EQ. 0.0) A(J,J)-TINY
DUM=1. 0/A(J,J)
DO 18 I-J+l, N
A(I,J)-A(I,J) *DUM

is CONTINUE
ENDIF

19 CONTINUE
IF (A(NN) .EQ. 0.0) A(N,N)=TINY
RETURN
END
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A3. Progra computing the form function of fluid spherical shells

REAL*S X,XL,QL,BA,RHO,RHOE,XMIN,XMAXDX,JX(600),
"+ JXL(600),JQL(600),YX(600),YXL(600)bYQL(600)OD(3,3),DI(3,3),
"* C,DLTDR,DETDI,CLDNR, DNICOEF,FORM,SUMRSUMI

INTEGER NMAX,IJOMAXOKOINDX(3)
C-1. 479000
RHO-i. 000
RHOE-7.*840D0
CL-S .85400
BA-0.838D0
XMIN-0. 000
XMAX-400.* 00
X-XMIN
DX-0.*05000

P1-3.*1415926
MAX-INT( (XMAX-XMIN)/OX)
DO 1000 I-1,MAX

X-I*DX
XL-X*C/CL
QL-XL* BA

IF ( (0.20 .LT. X) *AMD. (X .LT. 8.0)) THEN
NMAX-2+NINT(X+4.0*DEXP(DLOG(X)/3.01)

ELSE
NMAX-3+NINT(X+4.05*DEXP(DL-OG(X)/3.0))

ENDIF

CALL BESSEL(NMAX+2, X,JX)
CALL BESSEL(NMAX+2 ,XL,JXL)
CALL BESSEL(NMAX+2 ,QLJQL)

CALL NEUMANN(NMAX+2,XoYX)
CALL NEUMANN (NMAX+2 ,XL, YXL)
CALL NEUMANN (NMAX+2, QL, YQL)

SUMR-0.0
SUMI-0.0

DO 500 J-10 NMAX
FJ-DBLE (J-1)
0(1, 1)-(RHO/RHOE) *(C/CL) *JX(J)
0(1, 2) -JXL (J)
D (1 3) -YXL (J)

0(2, 1)=FJ*JX(J)/X-JX(J4.1)
0(2, 2)=FJ*JXL(J)/XL-JXL(J+l)
0(2, 3)-FJ*YXL(J)/XL-.YXL(J+1)



DO(3, 1) -0.0D0
D(3 ,2)-JQL(J)
D(3,3)-YQL(J)

DI (1,1)-(RHO/RHOE) *(C/CL) *YX(J)
DI (2, 1)=FJ*YX(J)/X-YX(J+1)
DI (3, 1) -0.000O
DO 200 K-2, 3

DI(1,K)-D(1,K)
DI(2,K)-D(2,K)
DI(3,K)-D(3,K)

200 continue

CALL LUDCMP(D, 3,3, INDX, DETDR)
CALL LUDCMP(DI,3,3,INDX,DETDI)

DO 300 K-1, 3
DETDR-DETDR*D (K, K)
DETDI-DETDI*DI (K, K)

300 CONTINUE
DNR=DETDR

DNI-DETDI
COEF-( (-1.0) **(J+1) )*(2.0*FJ+1.0)
SUMR-SUMR+C0EF* (DNI/ (DNR+DNI* (DNI/DNR)))
SUMI-SUMI+C0EF* (DNR/ (DNR+DNI* (DNI/DNR)))

S00 CONTINUE

SUMR-(2.0/X) *SUMR
SUMI=(2.0/X) *SUJ?4
write (7,2000) x,sumr,sumi

1000 CONTINUE
2000 FORMAT(3FI2.6)

END

SUBROUTINE NEUMANN (N, X, YN)

REAL*8 X,YN(600)
INTEGER I,N
IF ( (X .LT. 0.0) OR1. (N .LT. 2) )THEN
WRITE(6,*) 'FAILURE IN NEUMANN FCN ROUTINE'
GOTO 30
ENDIF
YN(l)--DCOS(X)/X
YN(2)--DCOS(X)/ (X**2) -DSIN(X)/X
DO 10 Iinl,N.-1

10 CONTINUE
30 RETURN

END
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SUBROUTINE BESSEL(N, X,JN)

REAL*8 X,JN(600) ,RATIO,JO,JMX,JMX1
INTEGER I,HAX,N,NT
JMX=1.0
JMX1-1. OD-iQO
MAX=N+2 0
IF ( (X .LT. 0.0) .OR. (N .GT. 500) )THEN
WRITE(6,*) 'FAILURE IN BESSEL FCN ROUTINE'
GOTO 90
ENDIF
JO=DSIN (X) /X
IF (N .GT. INT(X)) THEN
DO 10 I=1,MAX-1

NT=MAX- I
JN(NT)=((2.0*DBLE(NT)+1.0)/X)*JMX-JMX1
JMX1=JMX
JMX=JN (NT)

10 CONTINUE
RATIO=JO/JN (1)
DO 20 I=1,N+1

JN(I)=RATIO*JN(I)
20 CONTINUE

ELSE
JN(1)=JO
JN(2)=DSIN(X)/(X**2)-DCOS(X)/X2
DO 35 I=1, N-2
JN(I+2)=((2.0*DBLE(I)+1.0)/X)*JN(I+1)-JN(I)

35 CONTINUE
ENDIF

90 RETURN
END

SUBROUTINE LUDCMP(A,N,NP, INDX, D)

IMPLICIT REAL*8 (A-H, O-Z)
PARAMETER(NMAX=100, TINY=1.OD-150)
DIMENSION A(NP,NP) ,INDX (N) ,VV(NMAX)
D=1.*0
DO 12 I=1, N

AAMAX=0. 0
DO 11 J=1, N
IF (DABS(A(I,J)) *GT. AAMAX) AAMAX=DABS(A(I,J))

11 CONTINUE
IF (AAMAX .EQ. 0.0) PAUSE 'SINGULAR MATRIX'
VV(I)=1.0/AAMAX

12 CONTINUE
DO 19 J=1, N
IF (J .GT. 1) THEN

DO 14 I=l, J-1
SUM=A(I,J)
IF (I .GT. 1) THEN

DO 13 K=1, I-1
SUM=SUM-A(I,K) *A(K,J)
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13 CONTINUE

ENDF A (I, J) -SUM

14 CONTINUE
ENDIF
AAMAX-0.0
DO 16 I-J, N

SUM=A(I ,J)
IF (J .GT. 1) THEN
DO 15 K-1, J-1

SUM=SUM-A(IK) *A(K,J)
15 CONTINUE

A(I,J)=SUM
ENDIF
DUM-VV(I) *DABS (SUM)
IF (DUM .GE. AAMAX) THEN

IMAX- I
AAMAX-DUM

ENDIF
16 CONTINUE

IF (J .NE. IMAX) THEN
DO 17 K=1, N

DUM-A (IMAX, K)
A (IMAXg K)-A (J, K)
A(J,K)-DUM

17 CONTINUE
D=- D
VV(IMAX)-VV(J)
ENDIF
INDX(J) -IMAX
IF (J .NE. N) THEN

IF (A(J,J) .EQ. 0.0) A(J,J)=TINY
DUM=1.0/A(J,J)
00 18 I-J+1, N
A(I ,J)=A(I ,J) *DUM

18 CONTINUE
ENDIF

19 CONTINUE
IF (A(N,N) .EQ. 0.0) A(N,N)-TINY
RETURN
END
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M. Program computing ransient scattering: integration

REAL M,A,B,XO,X,Xl,X2, TWOPI,G,REG,IMG, ARG,REF,IMF,REAL,
$IMAG, P (5 0 00) , BO
INTEGER I,N,J,Nl
WRITE(5, 10)

10 FORMAT(IREAD IN N & Ni')
READ (5,20) N,N1

20 FORMAT(2I4)
XO=49.1
BO=4.
TWOPI-2*3.*1415926
H=TWOPI * B/XO
X1-0. 05
Tl-2 0*M/N1
DO 200 J-1,N2.
P(J-00.0

200 CONTINUE
DO 100 Iinl,N
T - 6*

C X-I*X1
READ (9,500 )X,REF,IMF
REF=-REF
IMF=+IMF

500 FORMAT(3F12.6)
X2-X-XO
X2=ABS (X2)
A=X+XO
B=X-XO
IF (X2.LT.1.0E-8) GO TO 30
REG=(1-COS(M*A) )/A-(1-COS(M*B) )/B
IMG=SIN (M*A) IA-SIN (M*B) /B

C IF(REG.EQ.0.0) GO TO 25
C ARG =ATAN2(IMG, REG)
C GOTO 28
C 25 ARG -3.1415926/2
C 28 ARG -ARG/3.1415926

GO TO 40
30 REG=(1-COS(M*A) )/A

IMG=SIN (M*A) /A-M
40 IMG=-IMG

C G= (REG**2+IMG**2) **Q*5
C ARG = ATAN2(IMG, REG)/3.1415926
C WRITE (7,50) X,G
C

REAL=REG*REF -IMG*IMF
IMAG-IMG*REF 4-REG*IMF
DO 300 J-1,N1
P(J)=(REAL*COS(X*T)+IMAG*SIN(X*T) ) *X.P(J)
T=T+Tl

300 CONTINUE
100 CONTINUE
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T- -6.0*M-T1
DO 400 J-I,N1
T-T+T1
P(J) =P(J)/TWOPI
WRITE(8,5_0) T, P(J)"400* CbNTINUE

50 FORMAT(2F12.6)
STOP
END

Program A4. This program computes the transient backscatering from any scatterer

for a BO-cycle sine burst with a carrier frequency xo. A simple trapezoidal method

is used in doing the integration in Eq.(3.10). The disk defined as device 9 contains

the data for the form function of any scatterer. The N and NI are parameters which

specify, respectively, the number of data for the form function and the number of

points you want for each cycle of the incident burst.
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AS. program computing transient scattering: FFT routines

INTEGER I, N, M, Ni
REAL CONST, TWOPI, XOB, UL,T,T1,MODSEQ ,MODCOEF,KA,

$ REF,IMF,T2,Y
COMPLEX C, COEF(34280),H, SEQ(34280)
EXTERNAL CONST, FFTCF, FFTCB
COMMON /WORKSP/ RWKSP
REAL RWKSP'206000)
CALL IWKIN(206000)
XO-49.1
B-4.
M=INT(B*25.)
N=INT(XO*M/B/0. 05)
IF (N/2.GT.0) N=N+1
TWOPI- 2.0*CONST( 'Pl')
UL=TWOPI*B/XO
T =0.
T2=0.
T 1-UL/M
Y 3*FWOAT(M)/UL

N1= IFIX(Y)+l
D0 30 I=1,N1

SEQ (1).-0.
MODSEQ =REAL(SEQ(I))
WRITE (6,300) T,MODSEQ
T=T+Tl

30 CONTINUE
DO 10 I=N1+1 ,Nl+l+ M

SEQ(I)= SIN(XO*T2)
MODSEQ =REAL(SEQ(I))
WRITE (6,300) T,MODSEQ
T2=T2+Tl
T =T +Ti

10 CONTINUE
DO 20 I=N1+2+M , N

SEQ(I)=0.
MODSEQ =REAL(SEQ(I))
IF (T.GT.5) GO TO 20
WRITE (6,300) T,MODSEQ
T=T+Tl

20 CONTINUE
CALL FFTCF (N, SEQ, COEF)
DO 1000 I=1, N
KA=FLOAT(I-1) *XO*M/B/FLOAT(N)
MODCOEF =CABS(COEF(I) )/FLOAT(M)
BETA=ATAN2(AIMAG(COEF(I)), REAL(COEF(I)))/CONST('IPI)*180
WRITE (7,300) KA,MODCOEF
WRITE (2,300) KA,BETA

1000 CONTINUE
DO 4000 I=2,8001
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READ (9, 5000) X,REF,IMF
5000 FORMAT (3F12.6)

COEF(I)=COEF(I) *CMPLX(-REF, -IMF)
4000 CONTINUE

DO 3000 I- 8001 ,N
COEF(I)-(0.,0.)

OOO CONTINUE
CALL FFTCB (N,COEF,SEQ)
Tin-UL/FLOAT (M)
DO 2000 I=1,N
SEQ(I)-SEQ(I) *2./FLOAT(N)
MODSEQ - REAL(SEQ(I))
T= T +T1
IF (T.GE.10.) GO TO 2500
WRITE(8,300) T, MODSEQ

300 FORMAT(2F12.6)
2000 CONTINUE
2500 STOP

END

Program A5. This program computes the transient backscatering from any scatterer

for a B-cycle sine burst with a carrier frequency xo. Two FF1 routines, namely,

FFTCF and FFTCB, in the CMS main frame Fortran routines bank are utilized.

The parameters N and M specify, respectively, the total number of points for the

input sequence and the number of points per cycle for the input burst. The disk

defined as device 9 contains the data for the form function of any scatterer. The sign

of these data may have to be changed depending on the time convention the form

function program is using.

//

It
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A6. llustration about writing and using the programs

The program computing the form function of an elastic sphere was written by

Chivers and Anson22. Both the program computing the form function of elastic spherical

shells and that of fluid shells were written by S. Kargi. They are presented here just for

user's convenience. These programs are found written in e -icot time convention whose

results can be used in present computation without any change. To compute the form

function for high ka values, which is often the case for transient calculations, one needs to

expand the dimension of the arrays defined in the programs. But this is not limitless. These

programs can not calculate the form function for arbitrarily high ka values. This could be a

problem sometimes. As in the case of resonance scattering by aluminum shell, the carrier

frequency is as high as xo = 340, but the form function can only be calculated up to x =

480 for the material constants we are using. The cut-off high frequency of 480 gives us a

real incident burst as shown in Fig. Al which is far from perfect. When interpreting the

transient scattering in this case, one has to take into the consideration the no longer small

difference between the ideal and real incident bursts.

The programs computing the transient scattering are also written in e-icot time

convention but the FFT routines called from IMSL bank are in e+icot time convention.

Since our input is a real sequence, the difference in time convention gives a different sign

for the imaginary part of the result. That is why the sentence img = -img is used in the

program calling the routines.

In order for the set of samples of a signal to correctly represent that signal, the

sampling theorem has to be satisfied. Since an upper limit of integration or summation xmax

has been assumed, the sampling frequency can not be less than 2xmax. Suppose we want



104

L points per cycle for the incident burst, then the sampling theorem states the following

condition

LxO Z 2xmax (A6. 1)

Throughout the report, xmax - 400 and Ax = 0.05 have been chosen except for the

aluminum and aluminum/fluid shell cases where xmax = 480 and Ax - 0.1. When xo < 40,

we can either let L be greater or reduce the value of xmax a little bit. We decided to adopt the

former solution, namely, changing L while keeping xmax = 400. Examples are Fig.6d

where L - 40 and Fig 5c(a),1 la, lb,Bl(a) and BI(b) where L = 25.

As stated in Chapter 4, large value of N could be a calculation problem. A 10-

cylinder account on the CMS main frame can only support the calculation of N-34000.

When computing the backscattering from aluminum or aluminum/fluid shell, the carrier

frequencies we are interested in are xo - 302 and 340. Since we have N = Lxo/Ax, L has

to be decreased and Ax has to be increased in order to keep N under this limit. Therefore

Ax = 0.1 and L = 10 have been chosen, which also assures the sampling theorem

condition for xmax - 480.

It should be pointed out that the upper limit of the summation in Eq.(4.15) should

be the same as xmax. In other words AxN/2 = xmax, or LxO - 2xmax. Fortunately, the

components above xmax for all the bursts considered in this report is small enough that as

far as the physics in the scattering process is concerned, the inequality (A6.1) can be

regarded as the proper condition which has been assured throughout the work.



105

o c

• - o ,-



106

B. Additional Data and Graphs

BI. Mid-frequency enhancement of the backscattering for 4-cycle burst

B2. Resonance backscattering from aluminum/fluid shell: 1-cycle

B3. Resonance backscattering from aluminum/fluid shell: 4-cycle

B4. Resonance backscattering from SS440c/fluid shell: 1-cycle

BS. Resonance backscattering from SS440c/fluid shell: 4-cycle

B6. Resonance backscattering from real aluminum shell: 1-cycle

B7. Resonance backscattering from real aluminum shell: 4-cycle

B8. Resonance backscattering from real SS44Oc shell: 1-cycle

B9. Resonance backscattering from real SS44Oc shell: 4-cycle
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C. Impulse Response and Form Function

Eq.(3.7) states that p'(@) and F(x) are a Fourier Transform pair when G(x) a 1, or

in other words, when incident wave is a Dirac delta function 8(T). Therefore we would

expect to obtain the impulse response of the scatterer by taking the inverse Fourier

Transform of the form function. Considering the time reference point, we let the incident

wave starting atz = 3 be a half cycle sine wave with xo = 200 andL = 4. It is equivalent to

a delta function with nonzero value 1 only att = 3. Its spectrum was checked to be unity

for all x value. When taking the inverse Fourier Transform, the cut-off frequency is chosen

to be 400. Computed backscattering, or the impulse response of a 2.5%-thick SS304 shell

is shown in Fig.C1. We clearly see a low frequency response starting at T - 5 which is the

manifestation of existence of a mid-frequency enhancement. The measured interval

between the center of the response, assumed to be right at the peak indicated by an arrow,

and the specular reflection is 4.44. The excellent agreement with the ray model calculation

value (4.467) strongly suggests the validity of the coincident ray model.

Fig. 5c(a), 5c(b) and 5c(c) suggest a very low frequency enhancement. The

impulse response of a 16.2%-thick SS440C shell, shown as Fig.C2, was computed by

choosing a half-cycle sine burst with xo = 200 and L = 4. A low frequency response is

evident, which shows that there does exist a low frequency enhancement for such a thick

shell.



132

P
1.0

0.5

0.0 - --

-0.5

-1.0,

0a 2 3

Fig.Cl. The impulse response of a 2.5%-thick SS304 shell.
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Fig.C2. The impulse response of a 16.2%-thick SS440C shell.
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D. Additional Evidence of Mid-Frequency Enhancement:

Arrival Time Check With Ray Model Calculation

The coincident ray model for the mid-frequency enhancement has predicted that

relative to the specular reflection the arrival time of the echo due to the mid-frequency

enhancement can be described by T = 2 + x/cgI. The calculated time interval between the

center of the specular reflection and the center of the coincident echo by ray model is 4.467

for 2.5%-thick SS304 shell and xo = 46.0. Fig. lId shows that at xo = 46.0, the echo due

to the mid-frequency enhancement is quite symmetric therefore it is easy to locate the center

of the echo. Actually it can be determined as T = 6.768 by looking at the Table 4.4 and the

center of the specular reflection can be calculated as t = 1 + 10 x 2x/xo = 2.366. The time

interval between them is therefore 4.402 which is pretty much the same as the ray model

prediction. This simple check gives additional evidence of the validity of the coincident ray

model.

Fig.Dl. The arrival time of
7- various surface waves for

2.5%-thick SS304 shell. The
solid curve is for I = ao, the

6 1 short-dashed curve is for 1 =
so, and the short-long-dashed

5 -... ... curve is for I - ao'.

4-

3

2
/

1 I

0,

0 20 40 60 80 100
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E. More on Prompt Radiation Effect

We have seen in section 5.5 that the prompt radiation can be out of phase with the

specular reflection, which makes it difficult to infer the amplitude of the prompt radiation

wave for the case of the backscattering from a SS440C shell (Fig.18a). In section 5.4 we

have assumed a fluid shell to remove the effects due to the elastic surface waves and

transverse waves. Here we want to single out the prompt radiation from the specular

reflection background, which can be achieved by subtracting the backscattering by a fluid

shell from that by an elastic shell. The results for aluminum and SS440C shell cases have

been shown as Fig.E. The prompt radiation can be clearly seen for both aluminum (Xo =

302) and SS440C (xo = 71.0) cases. Comparison of Figs. El and E2 for the aluminum

case shows clear evidence of a substantial prompt contribution for xo = 302 and a much

weaker prompt contribution for xo = 340. It is interesting to notice that Figs. El and E2

display a qualitative similarity with the burst response of a damped harmonic oscillator near

and away from resonance respectively. For a review of the burst response of such systems

see e.g. Pippard 23.

The arrival of other surface wave contributions makes the steady-state prompt

radiation contribution hard to be determined for the SS440C case. Shown in Fig.E5 is the

case of 80-cycle incident burst. If the backscattering reaches its steady state right before the

burst turns off, which is a suggestion of the figure although it can not be fully trusted, then

the measured amplitude value is 2.0. Neglecting the relatively weak contribution of other

surface waves in this time interval, the value 2.0 becomes the estimate of the prompt

radiation contribution. This value is remarkably close to the value of 1.95 at xo = 71.0

implicit in Fig.7 of Ref.20. That is the magnitude of the error in the steady-state ray

synthesis, which neglects prompt radiation contribution. Thus 1.95 and 2.0 are consistent

estimates of the prompt contribution for the SS440C case.



135

v

cL 6 U

o.b

I-

I III I



136

00

gei



137

.- S- U,

ca

- =- -- -

- t

[- !

- - . -- - - . -

CL.-



138

S

=11
p..

I.�i
0

= C�4

- - U,
- �-- -

-� -
- -- � - �

- -

* I-

*1I
0.

- -
C.'

4)

0

in
- 0 -



139

Czo

AM

La

0

C4U 0 an



140

References

1. R-Iickling. "Analysis of echoes from a hollow metallic sphere in water," J. Acoust. Soc. Am. 36,

1124 - 1137 (1964).

2. KJ.Diercks and R.Hlckling, "Echoes from hollow aluminum spheres in water," J.AcousL Soc. Am. 41,

380 - 393 (1967).

3. AJ.Rudgers, "Acoustic pulses scattered by a rigid sphere immersed in a fluid," J.Acoust. Soc. Am. 45,

900. 910 (1969).

4. JJ.Stephens, P.S.Ray and RJ.Kurzeja, "Far-field transient backscatering by water drops," J.

Annospheric ScL 28, 785 - 793 (1971).

5. H.nada. "Backscattered short pulse response of sturface waves trom dielectric spheres," Applied Optics

13, 1928- 1933 (1974).

6. P.S.Ray, JJ.Stephens and T.W.Kitterman, "Newr-field impulse response examination of backscanering

from dielectric spheres," Applied Optics 14,2492- 2498 (1975).

7. 1. A. Vikzorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum, New York,

1967).

8. NMTalmant, H.Ubeal, R.D.Miller and J.W.Dickey, "Lamb waves and fluid-borne waves on water-

loaded, air-filled thin spherical shells," J. Acoust. Soc. Am. 86,278 - 289 (1989).

9. K.L.Williams and P.L.Marston, "Backscattering from an elastic sphere: Sommerfeld-Watson

transformation and experimental confirmation," J. Acoust. Soc. Am. 78, 1093 - 1102 (1985).

10. K.L.Williams and P.L.Marston, "Synthesis of backscattering from an elastic sphere using the

Sommerfeld-Watson transformation and giving a Fabry-Perot analysis of resonances," J. Acoust. Soc. Am.

79, 1702 - 1708 (1986).

11. S.G.Kargl and P.L.Marston, "Longitudinal resonances in the form function for backscauering from a

spherical shell : Fluid shell case," J. Acoust. Soc. Am. 88, 1114 - 1122 (1990).

12. S.G.Kargl and P.LMarston, "Observation and modeling of the backscanering of short tone bursts from

a spherical shell: Lamb wave echoes, glory and axial reverberations," J. Acoust. Soc. Am.85, 1014 - 1028

(1989).

13. S.G.Kargl and P.L.Marston, "Ray synthesis of Lamb wave contributions to the total scattering cross

section for an elastic spherical shell," J. Acoust. Soc. Am. 88, 1103 -1113 (1990).

14. B.Gold and C.M.Rader, Digital Processing of Signals, (McGraw-Hill 1969).

15. IMSL Stat/Library, Fortran subroutines for mathematical applications, version 1.0 April 1987.



141

16. G.S.Sammelmann, D.H.Trivett, and RIH.Hackman, "ITe acoustic scattering by a submerged, spherical

shell.I: Tlh bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave," J. Acoust.

Soc. Am.8$, 114 - 124 (1989).

17. G.S.Sammelmann and R.H.-lackman. "The acoustic scattering by a submerged, spherical shell.II: The

high-frequency region and the thickness quasiresonance," J. Acoust. Soc. Am. 89, 2096 - 2103 (1991).

18. P.L.Marston, "GTD for backscattering from elastic spheres and cylinders in water and the coupling of

surface elastic waves with the acoustic field," J. Acoust. Soc. Am. 83, 25.37 (1988).

19. N.Sun and P.L.Marston, "Ray synthesis of backscatering by thin cylindrical shells (Abstract)," J.

Acoust Soc.Am. 89, 1949 (1991).

20. S.G.Kargl and P.L.Marston, "Ray synthesis of the form function for backscattering for an elastic

spherical shell: leaky Lamb waves and longitudinal resonances," J. Acoust. Soc. Am. 89, 2545 - 2558

(1991).

21. JLHo and LB.Felsen, "Nonconventional traveling wave formulations and my-acoustic reductions for

source-excited fluid-loaded thin elastic spherical shells," 3. Acoust. Soc. Am. 88, 2389 - 2414 (1990).

22. R.C.Chivers and L.W.Anson, "Calculations of the backscattering and radiation force functions of

spherical targets for use in ultrasonic beam assessment," Ultrasonics 20, 25 - 34 (1982).

23. A.B.Pippard, The physics of vibration, Vol. 1, p.145, (Cambridge University Press 1978).



/

142

TECHNICAL REPORT DISTRIBUTION, UNCLASSIFIED CONTRACT

Defense Technical Information Center 2 one-sided copies
Coneron Station
Alexandria, VA 22314

L. E. Hargrove 1 two-sided copy
Physics Division, Code 1112
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

S. G. Kargl I two-sided copy
Naval Coastal Systems Center
Physical Acoustics Branch
Code 2120
Panama City, FL 32407

L. G. Mhang I two-sided copy
School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164-2752

! ' " Ii m !p | l I •! ! I ' , , m , , ...............


